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Abstract: Network congestion control is comprised of connection admission control (CAC) and network 

policing control (NPC). Dynamic Call Admission Control (DCAC) is a class in CAC primarily intended to 

achieve network protection from congestion thereby enhancing network performance and utilization. ATM 

network is sensitive to varying traffic intensity and the accompanying QoS requirements. Therefore ATM based 

CAC system is chosen because of the distinct position it occupies in the present network technology. This work 

investigates the impact of variations in cell arrival process on the DCAC using cell burstiness as parameter. 

Equally, DCAC is investigated based on QoS parameters such as cell loss probability, cell delay and cell 

occupancy. Computer modeling and simulation techniques are employed. The simulation results obtained show 

that varying the cell arrival process brings about variation in the QoS metrics and so, the different cell arrival 

distribution models have different impacts on the Dynamic Call Admission Control (DCAC) 
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I. Introduction 
Over four decades ago, precisely in 1968, CCITT established special study group D saddled with the 

responsibility of studying the use of digital technology in the telephone network. This study group, with the 

special assignment, established 4-year periods beginning with 1969. The first title of the group was “Planning of 

Digital Systems.” By 1977, the emphasis of the study group was on “Overall Aspects of Integrated Digital 

Networks” and “Integration of Services”. Then by 1989, the emphasis of the study shifted to “General Aspects 

of Integrated Services Digital Networks”. The concept of an “Integrated Services Digital Network, (ISDN)” was 

formulated in 1972 as one in which the same digital services and digital paths are used for different services 

such as telephony and data [1].  

The first ISDN standard was published under the title “G.705 Integrated Services Digital Network 

(ISDN)”. Although this first document of an ISDN standard is in the series G Recommendations, most of the 

ISDN standards are in series I Recommendations, with some also in G, O, Q, and X series Recommendations 

[2]. 

The inefficiency of ISDN in achieving the desired unification of services became more pronounced 

with advancement in communication technology. Then in 1988, CCITT issued a set of Recommendations for 

ISDN, under the general name of “Broadband Aspects of ISDN” [2]. An interim set of Broadband ISDN (B-

ISDN) Recommendations were first issued in 1990. The vision of B-ISDN involves the integration of voice, 

video, and data services end-to-end and with guaranteed Quality-of-Service (QoS). To support this B-ISDN, the 

Asynchronous Transfer Mode (ATM) network architecture was proposed by the ITU, as the transport 

mechanism of choice for the B-ISDN [3]. 

The traffic management is of paramount concern in the control of ATM traffics. In the traffic 

management, congestion control has been the focus area. Congestion control can be classified into two 

categories: Proactive and Reactive controls. In Proactive congestion control, schemes are set up to prevent the 

congestion condition from occurring. But in the Reactive congestion control, feedback information are collected 

and processed to control the network congestion level. Connection Admission Control (CAC) is an important 

part of the Proactive congestion control. The role of CAC is to control the number of connection flows into the 

network. A new connection request is progressed only when sufficient resources are available to establish and 

sustain the connection while guaranteeing that the QoS requirements of both the new connection and the already 

established connections within the network are not violated [4]. 

There is diversity in the nature and characteristics of traffics in an ATM network. These different 

traffics require different ways of handling so as to ensure that their respective QoS are guaranteed. 

Consequently, there is a necessity for CAC schemes to take into consideration the diverse traffic natures and 

their inherent characteristics such as the pattern by which the cells arriving from the traffic sources are 

distributed. Such arrival patterns should have impacts on QoS requirements such as the Cell Loss Probability 



Impact of Cell Arrival Process on a Dynamic Call Admission Control-Based ATM Network 

DOI: 10.9790/7388-110301100110                               www.iosrjournals.org                                         101 | Page 

(CLP) constraints. The issues of interest in this study are determination of the impact of varying cell arrivals on 

Dynamic Call Admission Control (DCAC) based on cell-loss probability, cell delay and cell occupancy. 

This study aims at showing how the average number of cells arriving at the entry node (admission 

point) of the network within a given interval of time varies from arrival process to arrival process. It also 

investigates the level of insensitivity or sensitivity of Dynamic Call Admission Control Scheme to variation in 

the cell arrival process with particular reference to Cell Loss Probability, Cell Delay and Cell occupancy. 

 

II. Review of related Literature 
A study of the different traffic classes and their features is imperative to the understanding of the data 

flow in ISDN networks, as well as, the call admission control in ATM network which is the basis of this 

research. Generally, there are three main classes of traffic in communication networks [5]. Voice and video are 

the representatives of the inherently real-time class I traffic [6]. Voice traffic has some level of tolerance to a 

certain amount of degradation and occasional blocking without losing any information. However, large 

transmission delays can disrupt a conversation if the necessary facilities are not put in place. Although the exact 

amount of subjectively acceptable delay is subject to argument, it seems generally agreed that the maximum 

allowable delay is in the approximate range between 100 and 500ms. Classes II and III traffic are collectively 

referred to as „data‟ [6]. Class II traffic consists of person-to-machine (or machine-to-machine) interactive data. 

Although this class is not strictly real-time, it has certain delay limitations. Communication here takes the form 

of intermittent bursts of information separated by intervals of silence at unequal rates hence they could be 

characterized as being „bursty‟. Class II messages can tolerate short transmission delays but are not error-

tolerant. Class III traffic consists of machine-to-machine “bulk data” which are characteristically unidirectional 

and relatively long. Not being real-time in nature, class III messages may be delayed substantially longer than 

class II messages and arrive in any random sequential order, provided they arrive without errors [6].  

Before the development of ATM networks, performance models of telecommunication systems were 

typically developed based on the assumption that arrival processes were distributed in Poisson fashion with the 

time between successive arrivals being exponentially distributed. In early ATM networks, arrival processes were 

also assumed to be Poisson distributed or Bernoulli distributed [7]. However, the performance models that were 

based on the Poisson and Bernoulli assumptions did not capture the bursty nature of ATM traffics. 

Consequently, there was a major shift that led to using the distributions of the ON/OFF type such as the 

interrupted Poisson process (IPP) and its discrete-time counterpart, the interrupted Bernoulli process (IBP) [7]. 

In IPP, the ON period is referred to as the ACTIVE period. This is the period during which arrivals occur in a 

Poisson fashion. On the other hand, the OFF period is referred to as the INACTIVE or IDLE period during 

which no arrivals occur. 

 

 

 

 

 

 

 

 

 

 

Fig 1: ON/OFF Traffic Model. 

 

These two periods (t1 and t2) or (t3 and t4) are exponentially distributed, and they alternate continuously. 

In interrupted Bernoulli process (IBP), arrivals occur during the ON period in a Bernoulli fashion while no 

arrivals occur during the OFF period. The two periods, (t1 and t2) or (t3 and t4), are geometrically distributed. 

Another model known as interrupted fluid process (IFP) uses the fluid approach in which arrivals occur at a 

continuous rate during the ACTIVE period. Early characterization of ATM traffic showed that the inter-arrival 

times of cells from a specific source may well be correlated. But in contrast, an IPP or IBP does not capture the 

notion of correlation since successive inter-arrival times are independent of each other [7]. As a result, more 

complex distributions were introduced for modeling ATM traffic. These distributions are in the form of 

Markovian arrival processes such as the Markov modulated Poisson process (MMPP); the discrete-time process, 

Markov modulated Bernoulli process (MMBP); and the Markov modulated Fluid process (MMFP). 

Unfortunately, the non-renewal of the aggregate arrival process poses a major challenge in modeling 

the superposition of several ON-OFF sources [8]. This non-renewal nature comes from variability of the 

instantaneous arrival rate due to the fluctuation of the number of sources in the ON state. The aggregate process 

differs from Poisson in the correlation between successive inter-arrival times. It is true this difference is small 
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under low traffic intensity, it should be noted that at high traffic intensity, the long-term accumulation of these 

small correlations has a major impact on the system performance [8]. From the point of view of classical 

superposition limit theorems [9], one should expect that the superposition of many component stationary arrival 

processes would be nearly Poisson, but even with more than a hundred sources, the multiplexer under heavy 

loads experiences packet delays much greater than would occur with a Poisson arrival process. The deviation 

from Poisson behavior increases with increase in the number of streams. This brings in the notion of „relevant 

time scale‟. The notion of time scale appears indirectly in the classical superposition limit theorem [9] in the 

requirement that the individual stream gets sparse as the number of streams increases, so that the total average 

arrival rate remains unchanged. In [8], it is shown that the aggregate process does not behave like a Poisson 

process over relatively short time intervals, but under heavy loads the congestion in the multiplexer is 

determined by the behavior of the arrival process over much longer time intervals, where it does not behave like 

a Poisson process. From the point of view of the queue, as the number of sources increases and the traffic 

intensity tends to one, the traffic interaction in the queue spans over many intervals in the superposition arrival 

process. Thus, the long-term covariances between the interarrival times in the aggregate packet arrival process 

play a significant role, and the aggregate arrival process eventually looks substantially more variable than a 

Poisson process. 

The Markov modulated Poisson process (MMPP) qualitatively models the time varying arrival rate and 

captures some of the important correlations between the interarrival times while still remaining analytically 

tractable [10], consequently, it has been extensively used to model the superposition of arrival processes. 

Considering a two-state Markov chain where the sojourn times in states 1 and 2 are  and  respectively.  

          

 

 

 

 

 

 

 

Fig 2: A Two-State MMPP 

 

When the chain is in state k (k =1,2) the arrival process is Poisson with rate λk. Using the probability 

generating function of the number of arrivals in an interval [11], 

       …….. ……………………………. (1) 

 

Where, for the two-state MMPP, the equilibrium probability vector π, is given by: 

                                                   …………………………. (2) 

 

 , ,    

The zero values of  the off-diagonal elements of Λ means that all inter-state transitions are 

accompanied by no arrivals. Arrivals are caused by only „self-state‟ transitions. 

If the number of arrivals of the stationary two-state MMPP over the interval [0,t] is denoted by Nt, then 

the average number of arrivals  is given by: 

       …………………………………………….. (3) 

In Markov modulated Bernoulli process (MMBP), there are various states and in each state, arrivals 

occur in a Bernoulli fashion at a state-dependent rate. One underlying assumption of an MMBP is that the time 

the arrival process spends in each state is geometrically distributed. Let Pn denote the state of the underlying 

Markov chain at time n and let aj(k) denote the probability of k arrivals when the underlying Markov chain is in 

state j. Also, let {An; n=1,2,…} denote a sequence of non-negative integer random variables representing the 

number of arrivals. Then in [12],  

,          j = 0 ,…, m; k = 0,1,2,….. 

assumption:  

This assumption implies that no cells arrive when the underlying Markov chain is in state 0, and at least 

one cell arrives in all other states. This assumption is satisfied by a discrete-time queue with a superposition of 

heterogeneous ON-OFF sources having geometrically distributed OFF-periods. A special type of MMBP is the 

two-state MMBP where the ON and OFF states alternate. The holding time on each state is assumed to be 
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geometrically distributed. The transition probabilities for the ON and OFF states are defined by Poff and Pon 

respectively. 

Fluid models characterize the traffic as a continuous stream with a parameterized flow rate. The fluid 

traffic paradigm dispenses with individual traffic units such that a traffic count is replaced by a traffic volume 

which implies that the models are appropriate in case where individual units of traffic are numerous relative to 

chosen time scale, such that an individual unit is by itself of little significance [13]. Models other than fluid flow 

models that distinguish between the cells and consider the arrival of each cell as a standalone event (happening 

at a defined time instant), typically consume huge amounts of memory and processing time for the simulation. 

On the contrary, a fluid flow model that characterizes the incoming cells by a finite flow rate requires 

comparatively less resources [14]. This is because in a fluid flow model, an event is generated only when there 

is a change of flow rate, and such changes in flow rates are less frequent compared to the arrivals of cells. By 

capturing the rate of changes at the input, the models analyze the different events that occur in the network [15]. 

Typical fluid models assume that sources are bursty and of the ON-OFF type [16], [17].  

 

2.1 Cell Arrival Process and Connection Admission Control 

In B-ISDN ATM, burstiness is of great concern. This is because burstiness as well as correlation are 

two parameters that grossly affect QoS measures such as cell loss probability [18]. ATM forum standardized the 

following parameters: peak cell rate, average cell rate or sustainable cell rate, cell delay variation for the peak 

rate, and maximum burst length. One can effectively police the peak rate using the peak rate and cell delay 

variation. Similarly, using the maximum burst length, one can estimate a cell delay variation that can be used to 

police the average rate. But these parameters are fairly inadequate when it comes to bandwidth allocation, since 

it can easily be shown that there are different distributions (arrival patterns or traffic models) with the same peak 

rate, average rate, and maximum burst length, but with different burstiness and inter-arrival correlations [18]. In 

[19], it was shown that different arrival processes affect burstiness. 

Several CAC schemes exist. The non-statistical CAC scheme uses only the knowledge of the Peak cell 

rate (PCR) parameter to compare against the network available bandwidth and decide whether to accept the new 

connection request or not [4]. The new connection is accepted if the sum of the peak rates of all the existing 

connections plus the peak rate of the new connection is less than the capacity of the output link. The 

disadvantage of peak allocation is that unless connections transmit at peak rates, the output port link will be 

grossly underutilized [7]. In statistical CAC, bandwidth for a new connection is not allocated on the basis of 

peak cell rates; rather, the allocated bandwidth is between the peak cell rate and the sustained cell rate [7], [4]. 

The consequence of this is that the sum of all the admitted connections peak cell rates may be greater than the 

outgoing link capacity. Statistical allocation makes economic sense when dealing with bursty sources, but it is 

difficult to characterize an arrival process here [7]. Many works have been done by a lot of researchers on the 

derivation of the equivalent capacity (one of the statistical allocation techniques) and the necessary 

approximations employed. [20] showed that effective bandwidth exists for a GI/G/1 system with a constraint on 

tail probability and an M/G/1 system with constraints on mean workload. [21] considered effective bandwidth 

for buffered network resources, while [22] considered the bufferless case. In [23], [24], and [25], results for the 

dominant negative exponential tails of certain non-Gaussian queues are obtained. Also, [21] considered the 

effective bandwidth based on the stochastic fluid flow model, while [23] is based on the batch Poisson arrival 

process. [26] discussed effective bandwidth for on/off sources with dependent and general distributions, while 

[27] considered on/off sources with different priorities. In [28], [29], equivalent bandwidth method is also used 

to allocate capacity based on source declarations and policing mechanisms. An extension of this method with 

some form of dependence on the current state of the network is looked at by [30], [31], [32]. In [33], the case of 

network node using a priority-service discipline to support multiple classes of service considered. In [34], the 

author proposed a measurement-based admissions control procedure based on the policed peak rates of the 

admitted connections as well as measurements of the aggregate arrival rate. Some effective bandwidth schemes 

may fail in specific situations highlighted by [35] [36]. In particular, it fails when the probability that the traffic 

load exceeds the link capacity is assumed to be close to one for a bufferless system having the same input. In the 

effective bandwidth scheme by [37], the effective bandwidth is computed from the combination of two different 

approaches. The first one relies on a fluid-flow model [38],[39],[40],[41], in which, the bit rate generated by a 

number of connections multiplexed together is represented as a continuous flow of bits with intensity varying in 

accordance with the state of an underlying continuous-time Markov chain. The second approximation focuses 

on the distribution of the stationary bit rate on a link. Due to the exclusive roles of each of the approximations, 

they are combined in other to complement each other in such a way that the first approximation estimates the 

equivalent capacity when the impact of individual connection characteristics is critical while the second 

approximation represents bandwidth requirements when the effect of statistical multiplexing is of significance. 

However, the CAC scheme may overestimate the aggregate bandwidth requirement when connections have 

short bursts because these bursts are normally smoothed out by the output buffer.  
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 Admission control schemes based fully or partially on real-time resource measurements will estimate 

the resource usage more accurately. Basically, these schemes attempt to predict whether the QoS objectives can 

be achieved if a new connection is admitted, based on the real-time measurements of certain resources. 

Therefore, measurement-based CAC schemes came up in a bid to overcome the drawbacks of model-based 

CAC [42]. The measurement-based CAC algorithms use network measurement to estimate current load of 

existing traffic, instead of computing the traffic characteristics out of the user specified connection‟s parameters 

[4]. So the strategy does not make any assumption about the offered traffic, instead, the network monitors and 

measures the incoming traffic statistics, and makes decision based on the measured statistics [42]. In [43], a 

Chernoff bound measurement based admissions control procedure that is based on the equivalent capacity was 

derived. The Chernoff bound gives a measurement based admissions control procedure based on measurements 

of the aggregate arrival rate and on a single burstiness parameter for all of the admitted connections. Admission 

decisions are made based on the current load being less than a pre-calculated threshold. However, CAC strategy 

based on a decision-theoretic framework is highly vulnerable to errors in the specification of the burstiness 

parameter. 

In [44] CAC scheme is proposed using artificial neural network. This scheme is based on the complex 

relationship between the offered traffic and QoS requirements during stochastic multiplexing. In [45], a global 

fuzzy traffic controller that handles, via separate mechanisms, both admission control and congestion control, is 

presented. [46] proposed a CAC scheme based on fuzzy-logic in which Cell Loss Ratio (CLR) fuzzy estimation 

based on number of calls per class is performed. [47] proposed a neurocomputing CAC which employs neural 

networks (NN‟s) to calculate the bandwidth required to support multimedia traffic with multiple QoS 

requirements. [48] proposed a neural fuzzy admission control algorithm that combines the best of both neural 

and fuzzy methods. In [49], the authors considered a neural network-based CAC mechanism that estimates the 

cell delay and cell loss experienced by each class of traffic in a heterogeneous stream. In [50], an alternative 

CAC scheme is proposed using a delay and loss based algorithm called quasi-linear dual class correlation, which 

conservatively estimates the cell delay and cell loss per traffic class using pre-computed vectors derived from 

the results of three dual arrival queuing models. 

In [42], a CAC that uses a variety of information, consisting of user declared UPC parameters and real 

time on-line traffic measurements was proposed. Using a queuing theoretic approach, the CAC then determines 

the required capacity or bandwidth to ensure the QoS objectives of all the classes are met.  
eqv

mes

eqv

upc

eqv

dyn CssCC )1(                                ………………………………… (4) 

where s is the smoothing factor that combines the declared UPC characterization and the on-line 

measured traffic statistics. This smoothing factor s is dynamically chosen using the fuzzy logic control approach 

based on on-line monitoring of QoS and link utilization.  

A conventional CAC scheme makes use of traffic parameters specified by the user and stored in some 

lookup table [51]. Due to the difficulties in managing the lookup table classifying the wide range of traffic 

characteristics of the ATM network into a reasonable number of class groups and verifying the fitness of the 

existing model to other arrival processes, there was the need for a CAC scheme, the performance of which is 

independent of the classification of calls, and the arrival process modeling. In dynamic CAC, bandwidth 

allocation to a connection assumes a dynamic adjustment every fixed time period [51]. The scheme estimates 

the distribution of the number of arriving cells with a renewal mechanism called exponential forecasting [4]. 

This distribution is estimated from the measured number of cells arriving at the output buffer during the fixed 

interval and traffic parameters specified by users. Call acceptance (connection admission) is decided on the basis 

of on-line evaluation of the upper bound of cell loss probability, derived from the estimated distribution of the 

number of cells arriving. QoS standards can be guaranteed using this control when there is no estimation error. 

This control can achieve higher utilization than a control that uses only traffic parameters, and can cope with 

excessive flow from an individual source [51]. 

In summary, the non-statistical CAC algorithm, as earlier stated, though is easy to implement sequel to 

the lone requirement of knowing the peak cell rate of the new connection, does not support statistical 

multiplexing and therefore does not have multiplexing gain. A measure of multiplexing gain being the ratio of 

the number of sources that can be handled with statistical QoS to the number of sources that can be handled if 

each is provided its peak rate [52]. Actually, this gain is as a result of the fact that information to be transmitted 

usually varies in time with peaks and troughs. Consequently, if different calls are fitted together (multiplexed) in 

such a way that peaks do not coincide, then more calls can be carried as against the peak allocation. Hence, the 

statistical CAC algorithms in which bandwidth allocation is a function of not only the peak cell rate but also 

some other statistical parameters such as the sustainable (average) cell rate, prove to be a better option as they 

support statistical multiplexing in varying degrees. Narrowing down to the statistical CAC schemes, it is very 

pertinent to note that every bandwidth allocation procedure (including the CAC schemes) uses either a static or 

dynamic strategy. In static allocation, a reference model is used to determine the bandwidth allocation. This 
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reference model, such as the source traffic descriptor used for CAC, is given apriori. The implication of this 

being that when the traffic conditions change, the static allocation scheme will fail as there is often no provision 

for modification. On the other hand, there is a monitoring of the actual traffic conditions in dynamic allocation 

schemes. This also implies that network engineers do not have to worry about detailed resource allocation at 

each moment. Instead, the network itself continuously adjusts the network resources assigned to each traffic 

class and each source-end pair [53]. To increase statistical multiplexing, parameters other than the peak cell rate 

must be specified in the source traffic descriptor. However, since for many services it is difficult to specify 

precise values for these additional parameters, users must specify large values for them. As a result, the resulting 

reference models become insufficient for static allocation [53]. Also, cell delay variation tolerance (CDVT) 

greatly impacts bandwidth determination but is difficult to specify accurately. Similarly cell delay variation 

(CDV) generated in the network may affect the amount of bandwidth needed [54]. The existence of CDV makes 

it difficult to derive an accurate reference model. These problems can be taken care of by employing a CAC 

algorithm that has dynamic characteristics. One of the salient features of the dynamic CAC that is of interest 

remains that the scheme incorporates on-line evaluation of cell loss probability. This feature makes it 

measurement–based and as such, the scheme enjoys the benefits of measurement–based CACs, most 

importantly, reliability and flexibility. Consequently, in the next sections of this paper, sensitivity of DCAC to 

variation in arrival process and also the impact of such variations on QoS parameters- the Cell Loss Probability, 

cell delay and cell occupancy, would be investigated. 

 

III. Traffic Model 
In this work, the traffic models considered are all of the ON-OFF type. However, the distributions vary. 

The cell arrival pattern is therefore bursty. All the traffic source models here have a 0.5 probability of being in 

the ON state. This also implies that the probability of being in the OFF state is 0.5. Each of the sources 

generates traffic at the respective rates of 100cells/s, 120cells/s, and 150cells/s. 

These models include the Interrupted Poisson Process (IPP) in which the distribution of cells within 

each burst assumes a Poisson fashion (each arrival instant can only have an arrival and the instants are random); 

the Interrupted Bernoulli Process (IBP) in which distribution is Bernoulli fashioned (simultaneous arrivals can 

be accommodated within an arrival instant); the ON-OFF (constant distribution) model in which the distribution 

of cells within a burst assumes a constant trend.  

 

3.1 Node Model 

Bearing in mind that with the knowledge of buffer capacity, effective service process, and adequate 

characterization of the cell arrival processes, the behavior of a queue taken in isolation is approximately the 

same as it is within the network, an isolated node is modeled.  

 
Figure 3: ATM network node model 

 

Connection requests from various sources attached to the node arrive at the rate λ, as expressed in 

equation (5). The intensity of traffic accessing the node is specified through the arrival rate. 

 



n

i

i

1

 .      ………………………………………………… (5)  

This node is composed of the following: 

 A buffer, k, of capacity 540cells. The service discipline here is First-In-First-Out and it is assumed that each 

buffer space can accommodate only a cell.  

 An output transmission link, µ. This is a single server with an exponential service rate of 480cells/s. 

 The Call admission control (CAC) facility. In this facility, the status of the nodal resources- the buffer and 

transmission link, is monitored on-line and available resources evaluated. A call is accepted only if its 

Adaptation 
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acceptance would not affect the QoS desired- the cell loss probability and cell delay requirements. If on the 

other hand, there are no resources to accommodate the call, it is rejected and lost. 

The Markov chain, birth and death process is used in modeling this node in which the buffer has a 

capacity N while the transmission link is a single server. 

 

 

 

 

 

 

 

 

 

Fig 4: An N+1 state Markov Chain 

 

Let the various states of the Markov chain denote the number of busy resources. Then using the fluid-

flow concept, the equilibrium equation for state 0 is given as  

10 PP    

01 PP



             …………………………………………………. (6) 

For state 1, 1120 2 PPPP   122 PP  
 

Substituting for P1,  
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For state 2,  
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Comparing equations 6, 7, and 8, one can infer that  
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The implication of equation 9 is that, 
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Then for state (N-1),  11)2( )1(   NNNN PNPPNP  1 NN PPN   
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Then considering state N, NNNN PNPPNP    11  
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Substituting for PN we have, 
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From basic concept of probability, 
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Equation 15 is the probability of having a 100% resource availability. Therefore, at this probability, 

any cell arriving at the buffer would be conveniently accommodated for service. Of great importance in this 

work is equation 12. This is the probability of zero percent resource availability. That implies that at this 

probability, any cell arrival would not have any resource to accommodate it and subsequently, the cell is lost. 

Using the buffer dimensioning for this model, the maximum admissible delay for any traffic model is 

given by [51]: 

LINK

MAX
C

KL
D   …………………………………………………… (16) 

Where: K = buffer capacity, L = length of cell, CLINK = capacity of the transmission link. 

 

IV. Simulation Results and Analysis 
The simulation was carried out using the models (i.e. traffic model and node model) presented in 

chapter. Each simulation was carried out using five traffic sources which are statistically identical but work 

independently. The duration for the simulation was chosen to be one hour in order to produce a stabilized result. 

Investigation of the impact of varying cell arrival process on DCAC is done by increasing the traffic intensity 

(number of connections) and observing the behaviors of the different traffic models. Here, the arrival rate is kept 

constant at 100cells/s while the number of connections is increased on a one-by-one basis. The results and 

analyses are shown below. 
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Fig 5: Average buffer occupancy versus traffic intensity (number of connections) 
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Fig 5 shows the behaviors of the traffic models with respect to buffer occupancy as the traffic intensity 

increases. Generally, as expected, as the number of connections increases, the buffer occupancy rate also 

increases. This increase is, however, not linear as the difference in values between successive connections, on 

the average, tend to be smaller at higher traffic intensities than at lower ones. Of the three models, the IBP 

attains a high occupancy ratio faster than either of the IPP and ON-OFF. This implies that the IBP would have 

the fastest cell loss rate and incur the longest delay. IPP and ON-OFF behave alike but a closer look at the table 

of values reveals that the upward trend in the values for the ON-OFF is not so for the IPP. This is explained by 

the probabilistic nature of the IPP. 
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Fig 6: Average Queuing delay versus traffic intensity (number of connections) 
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Fig 7: Average Cell loss probability versus traffic intensity (number of connections) 

 

Fig 6 plots the average queuing delay against traffic intensity. The graph shows that the ON-OFF has 

the best delay performance at low traffic intensities. But as the traffic intensity increases, the difference in the 

performances of ON-OFF and IPP models becomes less pronounced. At high traffic intensities, the IPP 

performs better than the ON-OFF though the difference is very small. Conclusively on the average, the IBP has 

the worst delay performance while the ON-OFF has the best delay performance (incurring the least delay). Fig 7 

plots the average cell loss probability against traffic intensity. IBP, as expected has the highest CLP values. 

Similarly, just as the delay performance, at lower traffic intensities, the ON-OFF has the best cell loss 

performance but at higher intensities, the IPP has the lowest CLP values. Furthermore, the ON-OFF, on the 

average, has the best performance. 

The above results have shown that the ON-OFF (constant distribution) model has the best performance 

among the three models considered. It is also shown that the performances of both the IPP and the ON-OFF 

(constant distribution) models tend to become unified (i.e. the same) and as such become difficult to 

differentiate as the traffic intensity increases. The implication of this is that the IPP and ON-OFF models can 
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substitute each other at high traffic intensity. The results also show that the IBP model has the worst 

performance among the three models with respect to the Quality of Service metrics (cell loss probability, cell 

queuing delay and buffer occupancy), as far as the dynamic call admission control (DCAC) is concerned.  

 

V. Conclusion 
The aim of the research work has been to investigate the impact of varying cell arrival process on 

dynamic call admission control using burstiness parameter, and with special focus on the quality of service 

metrics-cell delay, cell loss probability and buffer occupancy. The results of the simulation in chapter four have 

clearly shown the following: 

 That varying the cell arrival process brings about variation in queuing delay experienced by the cell. 

 That varying the cell arrival process also brings about variation in cell loss probability. 

 That variation of the arrival process also causes a variation in buffer occupancy. 

 Increasing the traffic intensity by increasing the arrival rate or by increasing the number of connections has 

an effect on the quality of service metrics with regards to the arrival process employed. 

It is therefore concluded that the different cell arrival distribution models have different impacts on the 

dynamic CAC. Of the three traffic models compared, the interrupted Bernoulli process (IBP) has the poorest 

performance while the ON-OFF (with constant distribution) has the best performance.  
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